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Abstract-Three-dimensional solids with ellipsoidal pores of various shapes filled with compressible
fluid are analyzed in the "undrained" approximation. Fluid pressures in cavities, induced by
externally applied loads, depend on cavity shapes and cavity orientations with respect to the applied
loads. This phenomenon ("pressure polarization") is coupled with the overall elastic response. The
analysis covers mixtures of cavities of diverse shapes and arbitrary orientational distributions.
Identification of the proper parameters of cavity density plays the key role in the analysis. 'D 1997
Elsevier Science Ltd.

I. FORMULAnON OF THE PROBLEM

We consider a linear elastic solid containing pores of various shapes filled with non-viscous
compressible fluid. The externally applied stress (f induces fluid pressures in cavities that
depend on cavity orientations with respect to (f, as well as on cavity shapes. This pressure
polarization (different fluid pressures in different cavities) is coupled with stress interactions
between cavities and with the overall elastic response of the material.

The problem of effective elastic properties of materials with fluid-filled pores was
examined by O'Connell and Budiansky (1974) and Budiansky and O'Connell (1976) in the
special case of pores' geometry-narrow, crack like cavities. Their analysis was limited to
random orientations (isotropy) and the phenomenon of fluid pressure polarization was not
discussed. We note that the applicability of their results is limited by the implicit assump­
tion that all cavities have the same aspect ratios. In a number of works, the problem of
pore pressure induced by the applied loads was addressed phenomenologically (without
micromechanical analysis of pore shapes), with the porous space assumed interconnected;
see Zimmerman (1991) for a review.

Kachanov (1993) considered an arbitrary orientational distribution of narrow crack­
like cavities (anisotropic overall properties) and examined the fluid pressure polarization,
as well as the impact of fluid on stress interactions between cracks. However, real materials
may contain defects of more general shapes; moreover, they often contain mixtures of
diverse defect shapes. Additional complicating factors are that the orientational distribution
may be non-random, giving rise to anisotropy of the overall response, and that some of the
pores may be "dry" or filled with fluid only partially. Figure I (salt water ice with inclusion
of saline water) provides an illustration.

The present work gives a general 3-D analysis that covers fluid-filled pores of arbitrary
ellipsoidal shapes. In particular, mixtures of cavities of diverse shapes (pores +cracks, etc.),
relevant for real microstructures, are considered. Some preliminary results of the present
study were reported by Kachanov et al. (1995).

The undrained approximation is assumed in the present work: the fluid mass in each
cavity is constant. If the matrix allows fluid diffusion, this approximation corresponds to
the "short time" response. In the opposite, "fully drained", limit, the effective response
coincides with that of the dry solid, see Kachanov et at. (1994). Thus, the undrained
approximation considered in the present work and the results for a dry material provide
bounds for the time-dependent eflective moduli in presence of diffusion.
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One of the key issues is the identification of proper parameters of ca/;ity density. We
call the density parameter proper, if it correctly takes the individual defect contributions
(with proper relative weights). Such parameters are necessary: only in their terms can the
results for mixtures of diverse cavity shapes and for various orientational distributions be
expressed. They are also convenient: the results cover all cavity shapes and orientational
distributions in a unified way. Another advantage of the proper density parameters is that
their identification establishes the overall anisotropy due to various defects (as determined
by the symmetry of the tensorial density parameter). We show that these parameters are
implied by the structure of the elastic potential.

The problem can be represented as a superposition of the sub-problems of Fig. 2 :
(a) matrix containing a cavity loaded at its boundary by traction (1" N, where (1 is the

uniform stress field at infinity and N is the outward to the material (inside the cavity) unit
normal to the boundary;

(b) matrix with a cavity loaded at the boundary by traction -(1" N; stresses vanish at
infinity;

(c) same as (b) but with tractions -qN normal to the boundary, where q is the (yet
unknown) fluid pressure in the cavity (assumed positive when compressive). Note that fluid
pressure q is to be understood as a response to (1. If a certain "background" pressure at
(1 = 0 is present, then q represents its change due to (1.

Thus, the problem reduces to the one of a dry cavity with additional tractions - qN.
We start with the usual representation of the overall strain per volume V of a linear

elastic solid with stress (1 at infinity and containing a cavity as a sum

(1)

where SO is the compliance tensor of the matrix; a colon denotes contraction over two
indices. The additional strain due to cavity is

dB = - 2
1
Vf(uN +Nu) dr (2)

where u denotes displacements of the cavity boundary r, and uN, Nu denote dyadic (tensor)
products of two vectors. The representation (2) follows from application of the divergence
theorem to a strained solid with a cavity (it is an immediate consequence of a footnote
remark of Hill, 1963 and was used in the explicit form by a number of authors, see, for
example, Vavakin and Salganik, 1975).

Due to linearity of the system, dB per volume V is a linear function of (1 and hence can
be written as

dB = H:(1 (3)

where the fourth rank tensor H is the cavity compliance tensor (possessing the usual
symmetries Hijkl = Hjilk = H khj implied by the existence of elastic potential). The H-tensors
were found for a number of 2-D shapes (ellipses, polygons) by Kachanov (1993) and
Tsukrov and Kachanov (1993) and, for 3-D ellipsoids, by Kachanov et al. (1994).

For afiuid-filled cavity, the superposition of Fig. 2 reduces the analysis to the case of
a dry cavity, by adding hydrostatic stress ql to (1 in (3) (I is a unit tensor). The problem is
thus reduced to finding fluid pressure q induced by (1, In order to find q, we first relate it to
the change in fluid density 11 (with respect to the reference density 110 prior to application of
(1) through a constitutive equation for the fluid. For simplicity, we assume that the fluid is
linearly compressible (K is the fluid compressibility) :
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Fig. I. Microstructure of salt water ice containing inclusions of saline water. (Courtesy of E. Gratz
and E. Schulson, Dartmouth College.)
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=...+M+
Fig. 2. Stress superposition for a solid with a fluid-filled cavity.
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(4)

Then, expressing the relative change of cavity volume 11 Vm! Veal in terms of compliance H
of the dry cavity, we have:

V [ V 3(l-2VO)]
Veal tr(H: IT) +q Veal' tr(H: I) - Eo = - Kq (5)

where the first term of the left-hand side corresponds to the sum of subproblems (a) and
(b) of Fig. 2 and the second term to the subproblem (c). Equation (5) determines q as a
linear function of IT.

2. FLUID PRESSURE INDUCED BY A REMOTELY APPLIED STRESS IN A SINGLE
ELLIPSOIDAL CAVITY

Fluid pressure q induced in a single cavity, being a linear function of remotely applied
stress IT, can be characterized by dimensionless second rank pressure polarization tensor Q:

(6)

Tensor Q is symmetric (it is defined by (6) to within its antisymmetric part, which can,
therefore, be set equal to zero). Q depends on the geometry of the cavity and on its
orientation with respect to IT. For a general ellipsoid (with axes 2a], 2az, 2a3 aligned with
unit vectors I, m, n, correspondingly), the results of Kachanov et al. (1994) for the H-tensor
of a dry cavity, combined with equation (5), yield

(7)

where the dimensionless coefficients R], R2, R3characterize the ellipsoid's geometry and are
the following combinations ofH-components (the latter are expressed in terms of Eshelby's
tensor, see Appendix A): R1 = (VEo/Vcm)(Hllll +H 1I22 +H 331 1), R2 = (VEo/Veav)(H1I22+
H2222 +H2233), R3= (VEo/Vcav)(H3311+H2233+H3333), and R = R 1+R2+R3. Note that R/Eo
characterizes the compressibility of a dry cavity: its relative volume change under the
hydrostatic loading P is equal to PR/ Eo (in the text to follow, Eo and Vo denote Young's
modulus and Poisson's ratio of the matrix).

As seen from (7), the sensitivity of fluid pressure q to the applied stress IT depends on
the dimensionless parameter that plays the key role in the analysis:
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(8)

where Cp = RIEo is the compressibility of a dry pore and Co = 3(1-2vo)IEo is the com­
pressibility of the matrix. Parameter 6 incorporates the physical parameters-the matrix
stiffness and the compressibility of the fluid-and the cavity geometry. As seen in the text
to follow, 6 determines the strength of coupling between fluid pressures in cavities and the
overall elastic response. In the limit of a highly compressible fluid ("air") or a very stiff
matrix, 6 is large and (J produces almost no change in q; for an incompressible fluid, or a
very soft matrix, 6 is negative and the pressure change is maximal. The case when fluid
and matrix compressibilities coincide (K = Co so that 6 = 0) corresponds to "absence" of
inhomogeneity for the hydrostatic loading. If the externally applied load is imagined as
"carried" partially by the matrix and partially by the fluid, then b determines their relative
shares in carrying the load, This parameter generalizes the one introduced by O'Connell
and Budiansky (1974) and Budiansky and O'Connell (1976) for the special case of a crack
to general ellipsoidal cavities.

In the case of a spheroid (al = a2 == a),

(9)

where n is a unit vector along the axis of symmetry of the spheroid and B], B2 ,

R = 9Al+3A2+3A3+A4+As are combinations of Eshelby's tensor components (see
Appendix A), which, for a spheroid, are expressed in elementary functions. Coefficients
BllR and B21R depend on the aspect ratio (= aJia of the spheroid and on Vo (Fig. 3). The
first term in (9) is orientation-dependent; coefficient BliR vanishes for a sphere. The second
term is orientation-independent; coefficient B21R vanishes for a crack.

In the simplest case ofa sphere, R = 9(I-vo)/2 and

I
Q = - 3(1 +15/ (10)

We now consider three special cases of spheroid's geometry: narrow, crack-like cavity,
somewhat deformed sphere and needle-shaped cavity.

0.6

0.21-//'1(\\'"

-0.2

-0.41-·· .. ·· .. ··

"'v()=o
V o=0.25

Vo= 0.45

-0.60L----'----2L---~3:----....l4:-----:5

aspect ratio S
Fig. 3. Two coefficients. BliRand B,iR. entering pressure polarization tensor Q for a spheroidal

cavity, as functions of the aspect ratio (.
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(1) Narrow, crack-like spheroidal cavity (( = a3/a « 1). In this case, R = 4( 1 - v~)!( (IT)
and

I
Q = - I +b"" (11 )

when 0 is a unit normal to the crack. As seen from (II), the sensitivity of fluid pressure to
applied loads is higher for thinner cavities (smaller 0, provided the fluid compressibility K

is larger than the matrix compressibility Co. In the opposite case K < Co, the mentioned
sensitivity is lower for thinner cavities.

(2) Somewhat deformed sphere (( = a3/a; 11 - (I « 1). Retaining only the terms of the
first order in (1 - 0, we find that the cavity compressibility coincides with the one of a
perfect sphere of the same volume. Thus, R = Rsphere, b = bsPhere' Tensor Q is expressed as
follows:

I 1 { • 2(1 + vo) }Q = --~- 1-(1-(.) (1-300) .
1+03 7-5vo

(12)

In the case of hydrostatic loading (1, the resulting fluid pressure response q coincides with
the one for a sphere, i.e., the perturbation manifests itself only in terms of the second order
in l-a3/a.

(3) Needle-shaped spheroidal cavity (( = a3/a» I). In this case, R = 5-4voand

b = KEo -3(1-2vo).

5-4vo .
I I

Q = - ~I---54 [-(I +vo)00+(2-vo)I]·+ () - Vo
(13)

In contrast with the case of crack-like cavity, b does not depend on C i.e., it is independent
of the cavity geometry.

Returning now to the case of general ellipsoidal cavity, we observe that for hydrostatic
loading (1 = - PI, the fluid pressure induced in the cavity is

I Cp
q=-~P= P

1+b Cp+K-Co
(14)

recovering Skempton's coefficient B = Cp/(Cp+ K - Co) in the form obtained by Zimmerman
(1991), for the special case of the spheroidal geometry. The dependence of q on the cavity
shape is expressed only through the compressibility Cp of a dry cavity.

3. FLUID PRESSURE POLARIZATION. PRESSURE AMPLIFICATION IN FLUID
I!'<CLUSIONS

The dependence of fluid pressure q on applied stress (1 is characterized by polarization
tensor Q that describes, in particular, the dependence of q on the cavity orientation with
respect to (1. This orientational dependence of q is illustrated in Fig. 4 for the case of a
uniaxial stress T oriented at different angles qJ to the symmetry axis of a spheroid.

In a solid with many fluid-filled cavities, the fluid pressures will be different for differ­
ently oriented cavities, even if they have identical shapes. This phenomenon can be called
pressure polarization. Since fluid pressures in cavities affect the displacements of cavity
boundaries, the pressure polarization is coupled with the effective elastic properties.

Note that, in the presence of fluid diffusion in the matrix, the differences between fluid
pressures in different cavities vanish with time, and, in the "long time" limit ("fully drained"
approximation) the effective response coincides with the one of a dry material, studied, for
cavities of various shapes, by Kachanov et al. (1994).
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Fig. 4. Fluid pressure q induced in a spheroidal cavity by a uniaxial loading - T, as a function of
orientation of the spheroid (if! is the angle between the cavity symmetry axis and the direction of
compression) for several aspect ratios (. The material parameters correspond to granite (Eo = 6 x 104

MPa, Va = 0.25) filled with water (K = 0.5 X 1O~3 MPa~I). (a) Oblate shapes. (b) Prolate shapes.

We also remark that, since the developed theory is linear, it applies, formally speaking,
to both compressive and tensile loadings. However, its applicability in the case of tensile
loading is limited by the onset of fluid cavitation.

Another interesting phenomenon is that fluid inclusions may act as "pressure ampli­
fiers". Pressure q in a fluid inclusion induced by applied hydrostatic pressure P can exceed
P in the case of undrained compression, provided the fluid compressibility is lower than
the matrix one (K < Co). For an incompressible fluid (K = 0), the factor relating q to P is
always> I (except for the case of an incompressible matrix, Vo = 1/2, when q is exactly
equal to P). This effect is very sensitive to Poisson's ratio Vo and is maximal when Vo == 0,
i.e., when the constraint provided by the matrix against the cavity volume change is maximal
(Fig. 5). For the spherical shape this amplifying factor is maximal and may be as high as 3
(at K = 0, Vo = 0) ; it is almost as high (~2.5) in the limit of a needle. For a narrow, crack­
like spheroidal cavity with an aspect ratio ( « I, this factor is [I - 3n(/4j-l = I +2.36(.
Thus, the sensitivity of q to the hydrostatic loading is highest for a sphere, somewhat lower
for a needle and rapidly drops for oblate shapes (Fig. 5).

In the case of non-hydrostatic loading (1, the "stress amplification" may also take place
for certain (1'S, provided K < Co. This effect occurs, for example, in the cases of uniaxial
loading normal to a crack-like cavity or a 2-D hydrostatic stress in the plane normal to a
needle-shaped cavity.
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Fig. 5. Fluid pressure q in a spheroidal cavity induced by remotely applied hydrostatic pressure P.
Dependence of the q-P diagram on the aspect ratio of the cavity. Note strong dependence on the

Poisson's ratio of the matrix.

4. COMPLIANCE TENSORS OF FLUID-FILLED CAVITIES

As follows from the superposition of Fig. 2, the compliance tensor ii of a fluid-filled
cavity is a sum of H for a dry cavity and the correctional term dH accounting for the fluid
presence: ii = H + dH. Correctional tensor dH can be derived in terms of H and pressure
polarization tensor Q. Indeed, the superposition of Fig. 2 implies that

ds = dsdry +d&f1Uld = H: G+H:(qI) = H: G+(H: IQ): G = H: G+dH: G (15)

so that, after the usual symmetrization of dHi}kl with respect to ij +-+ kl, we obtain:

With Q given by (7-12), we thus express dH in terms of dry cavity compliance Hand
parameter ().

For general ellipsoid, H-tensor has the form:

H = H 11 lllUl+H2222mmmm+H3333nnnn+Hl 122 (llmm+ mmll)

+H 2233 (mmnn+nnmm) + H 3311 (nnll + linn) + H 1212 (1m + ml)(lm +ml)

+ H 2323 (mn+nm)(mn+nm) +H3131 (nl + In)(nl + In) (17)

where Hijkl are expressed in terms of Eshelby's tensor (see Appendix A). Utilizing this result,
along with (7) and (16), we derive dH in the form:

1 Vcav l1{2 2 2dH = - --~--- R 111II+R 2mmmm+R 3nnnn
l+u V Eo R

+RtR2(llmm+mmU)+R2R3(mmnn+nnmm)+RtR3(nnU+lInn)} (18)

where the key role played by parameter () is again seen.
For a dry general spheroid (n is a unit vector along the symmetry axis) :
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(l9)

where coefficients Ai are given in Appendix A and J is the fourth rank isotropic tensor with
components Jijkl = b;kbjl+ bi/bjk . In this case,

(20)

where coefficients B i are given in Appendix A. Thus, the overall compliance tensor of a
fluid-filled general spheroid has the form

The first two terms in the brackets are orientation-independent (the isotropic strain response
of the cavity) and the remaining terms contain n and are orientation-dependent.

In the simplest case of a sphere, the orientation-dependent terms vanish (coefficients
A 3, As, B4 , Bs vanish) and

fI = Veal 3(1- vo) {~l + vo) J _ [1 +5vo + _l_~] II}
V 2Eo 7-5vo 7-5vo l+b3 . (23)

We now consider three special cases of spheroid's geometry: two limiting cases (crack­
like cavity and a needle) and the case of a slightly deformed sphere. For a crack-like cavity
and for a needle, we neglect terms of the first order in a small parameter' for a crack and
terms of the second order in a small parameter ,-1 for a needle; in the case of a deformed
sphere, the first order correction to the spherical shape is derived. The range of applicability
of the results for these special geometries is determined by requiring that the maximum
(taken over non-zero Hijkl) of the ratio I(H~;k~ct - H~J!srox)!H~j0ct I is sufficiently small. This
requirement guarantees that each component fJ.clj of the additional strain due to cavity is
well approximated by the asymptotic expression, for all stress states (fir

(1) For a crack-like spheroidal cavity (aspect ratio' = a3!a « 1), the orientation­
independent terms vanish and we have

a
3

16(I-v6) ( Vo )H = - , nIn - - nnnn ,
V 3(1- vo/2)Eo 2

a3 16(I-v6) 1
fJ.H = - - 3 ~I~nnnn

V Eo +u
(24)

- a
3

16(1-v6) { [vo 1 ( vo)] }
H = V 3(1-v

o
!2)E

o
nIn- 2 + 1+b 1- 2 nnnn. (25)

The range of applicability of these asymptotic expressions depends on Poisson's ratio Vo

and on parameter <5. For Vo = 0.25 and for a dry cavity, these results apply with errors of
less than 5% and 10% for the aspect ratios' < 0.05 and' < 0.1 correspondingly.

(2) For a somewhat deformed sphere (11 -" « 1) we obtain
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Veal 3(I- vo) { 2(1 +vo)
H = V 2(7 _ 5vo)Eo 10(1 + vo)J - (1 + 5vo)II + (1- 0 7(7 _ 5v

o
) [- 2(5 - 7vo)J

+ 2(17 - 35vo)I1- 3(17 - 35vo)(nnl + Inn) - 60(5 - 7Vo)nln]}
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(26)

(27)

The range of applicability of these asymptotic expressions depends on Poisson's ratio Vo
and on parameter 6. For Vo = 0.25 and for a dry cavity, these results apply with errors of
less than 5% and 10% for the aspect ratios 0.6 < , < 1.65 and 0.5 < , < 2 correspondingly.

(3) In the limit of a needle-shaped cavity (aspect ratio ( = a3/a » I),

Vea ,. 1 . 2 J

H = V E [- (I- 2vo)I1+4(1 - Vii)J + (I-2vo)(l + vo)(nnl+ Inn)
"

___1_ Veac ~ (2-vo)(l +vo) [2-VO _ 1+vo ]
~H - 1 " V E 5 4 1 II (nnl + Inn) + 2 nnnn.+ u 0 - Vo + Vo - Vo

(28)

(29)

The range of applicability of these asymptotic expressions strongly depends on Poisson's
ratio Vo (the error increases with Vo -> 0) and on parameter 6. For Vo = 0.25 and for a dry
cavity, these results apply with errors ofless than 5% and 10% for the aspect ratios' > 12
and' > 8, correspondingly.

5. EFFECTIVE ELASTIC PROPERTIES OF A SOLID WITH FLUID-FILLED CAVITIES.
PROPER PARAMETERS OF CAVITY DENSITY

We restrict the analysis to the approximation of non-interacting cavities (each cavity
is placed in the externally applied stress (1 and experiences no influence of neighbors). This
approximation is of a fundamental importance: besides being rigorous for small cavity
densities (provided the mutual positions of cavities are random), it constitutes a basic
building block for various approximate schemes. Such schemes usually place non-interacting
defects into some sort of "effective environment"-effective matrix (self-consistent, differ­
ential schemes) or effective stress (Mori-Tanaka's scheme). Therefore, the results of the
present work can be rewritten in the framework of any of these schemes.

The effective elastic properties are best analyzed in terms of elastic potentials. For-·
mulation in potentials has the conceptual advantage: it establishes the proper cavity density
parameters-parameters that correctly take the individual defect contributions (with correct
relative weights). Only in terms of such parameters can the effective properties be uniquely
expressed.

Formulation in terms of proper density parameters yields the following advantages:
I. Identification of proper density parameters establishes the overall anisotropy for

arbitrary statistics of cavity orientations and aspect ratios.
2. The effective moduli are obtained in a unified way for all orientational and aspect

ratio distributions, including mixtures of defects of diverse shapes, that are typical for real
microstructures.

3. The results do not degenerate in the cases when cavity volumes shrink to zero
(cracks).

As follows from (1), the elastic potential in stresses (complementary energy density)
1((1) = (1/2)(1: 8((1) can be represented as a sum

f((1) = fo +~f (30)
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(32)

where fo = (1/2£0)[(1 + vo)tr(O'· 0') - vo(trO')2] is the potential in absence of cavities and Afis
due to cavities. The problem of effective properties is thus reduced to finding !if a's a
function of 0'. Effective compliances Sijkl are then found from clj = af/aalj = Sijk/ak/'

The results of the present work can, of course, be reformulated in compliances, rather
than potentials. We prefer the formulation in potentials, since it identifies the proper
parameters of cavity density in the most transparent way.

Potential Afhas the form of a sum over all cavities:

Af = ~ 0' : L AS(k) = ~ 0' : LH(k) : 0' = ~ 0' : LWk) : 0' +~ 0' : L AH(k) : 0' (31)
'---y------J

6.fdr.~

and results of Section 4 for AH(k) can be utilized.
Structure of the potential identifies fourth rank tensor LH(k) = L(H+AH)(k) as the

proper general parameter of cavity density. This parameter may seem complex, but its
complexity is unaviodable : it covers diverse situations (mixtures of diverse shapes, various
orientational distributions) in a unified way. If the diversity is restricted, the parameter
simplifies and may, possibly, be replaced by a second rank tensor or, in the case of isotropy,
by one or two scalars.

Note that the density parameters are non-trivial, even in the simplest case of isotropy.
For example, porosity (relative volume of cavities) is not an adequate parameter for
randomly oriented general spheroids. For fluid-filled cavities, the density parameters reflect
both cavity shapes and fluid compressibility. In the text to follow, these parameters are
specialized for several cavity geometries and orientational distributions.

On the replacement ofsummation by integration
Summation over cavities can, for computational convenience, be replaced by inte­

gration over the cavity orientations, aspect ratios and sizes. For example, for spheroids
characterized by orientations n, aspect ratios ( and cross-sectional radii a, the sums would
have to be replaced by the following integrals:

LH(k) -> Loo 1""LH(n, Ca)P(n, Ca) dO d( da

where 0 is a hemisphere and pen, (, a) is a probability density function (which is not
necessarily representable as a product P j (n)P2(OP3(a), since cavities of certain orientations
may tend to be thinner and smaller than the ones of other orientations). We use a simpler
notation of sums throughout this work. In the cases of parallel and fully random (isotropic)
orientational distributions, calculations of sums are straightforward. In the cases of more
complex statistics the transition (32) can always be done and may be convenient if the
density function P is known.

We now specialize (31) for several specific cavity shapes. Setting fluid compressibility
K in the formulas below to 00 (then b(k) = CD) or to 0 (then b(k) = - Co/C~k» corresponds to
the limiting cases of a dry solid and of an incompressible fluid. If some of the cavities are
dry (or only partially filled with fluid), then b(k) = CD for them.

For the general spheroids,

. I " [ ( 2B4 ) J(k) .. I " (k)+ (tra)O'. VL. Vcav A 3 -1 +b nn + (0' 0'). vL. [Vca,.A 4 nn]

1 [ ( B s ) J(k
l

}+O':vL Vcav A s - I+b nnnn :0'. (33)

The first two terms in the braces are expressed in stress invariants tra and tr(O'· 0') and thus
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characterize the isotropic response, independent of cavity orientations. They vanish for
cracks. The last three terms are orientation-dependent; they vanish for spheres.

The structure of Llfimplies the proper cavity density parameters as the terms that enter
(33) in products with stresses. They identify the individual k-th cavity contributions, and
thus take contributions with correct "relative weights". There are five of them: two scalars,
two second rank tensors and a fourth rank tensor. The effective properties are expressed in
their terms in a unified way with respect to all statistics of orientations and aspect ratios.
In the text to follow, we specialize them to simpler parameters having transparent physical
meaning for various special cases (cracks, needles, spheres and somewhat deformed
spheres).

We first consider the case of overall isotropy (randomly oriented spheroids, with aspect
ratios and sizes uncorrelated with orientations). We start with a general remark on the
structure of the isotropic elastic potential and its applications for the parameters of cavity
density. Any isotropic elastic potential, being expressed in stress invariants, is a sum of two
terms, (troY and tr(a' a) ; therefore, we have no more than two scalar density parameters­
coefficients at these terms. Indeed, in the case of isotropy the second and fourth rank tensors
(1!V)L[ ](k) entering the last three terms of (33) have to be isotropic and hence can be found
as outlined in Appendix B. This yields

(34)

Therefore, the two scalars

(35)

(where D[ = l5A I +5A3 +A s,D2 = l5B3 +lOB4 +Bs,D3 = 15A 2 +5A 4+2As,D4 = 2Bs) are
the proper density parameters. They combine the information on cavity shapes with physical
parameters (5(k) in a non-trivial way. Only in terms of these parameters can the effective
isotropic elastic moduli be expressed in a unified way, for all mixtures of spheroids of
diverse aspect ratios:

(36)

Neither of the density parameters PI> P2 can be reduced to porosity p = (1!V)LV~~~.

Thus, even in the case of isotropy, porosity is not a proper parameter of cavity density. It
does become adequate in the case of spheres (as expected) and in the (less obvious) case of
randomly oriented needles. Figure 6 illustrates relations (36) as functions of cavity shapes.

An interesting observation is that in the wide range of aspect ratios ( (from about 0.7
to 00) the curves of Fig. 6 are almost horizontal. This means that, at a given overall porosity
p, the effective moduli in the case of random orientations are almost insensitive to cavity
shapes in the mentioned range of (. This insensitivity holds for both dry and fluid-filled
pores.

We now return to the general orientational distribution and examine several special
cases of cavity geometries.

(1) Spheres. This simplest case is obviously isotropic and is therefore covered by
potential (34). Both density parameters PI and P2 are proportional to porosity p =(1!V)
LV~.~~., with constant proportionality coefficients (dependent on Va and (5). Therefore, only
one density parameter p remains and
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Fig. 6. Randomly oriented spheroidal cavities of identical aspect ratios (. Effective Young's modulus
as a function of ( (porosity is kept constant. p = 0.1). I-dry material; II-granite (En = 6 x 104

MPa. \'Il = 0.25) with cavities filled with water (h: = 0.5 x 10- ) MPa --I); III-cavities filled with an
incompressible fluid (h: = 0).

~f'- 3(1-.vo){~(I+V02.. [1+5Vo__I_~J . 2}
. - P 4E 7-5 u(a a)- 7 5 + I s; 3 (t/a)o Vo - Vu +u

(37)

so that the effective isotropic moduli are:

Eo = l+p[3(1-Vo)(9+5VO ) __I~ I-voJ, Go = l+pI5(1-vo)
E 2(7-5vo) 1+15 2 G 2(7- 5vo)' (38)

As seen from (38), the presence of fluid does not affect the effective shear modulus ((382)

does not contain (5).
(2) Crack-like cavities. The general result (33) reduces to

16(1 - v6) [ I . Vo I, J
~f = (a' a): ~I(a3nn)(k)~ --a: - I(a'nnnn)(k) : a

3(2-vo)Eo V 2 V
, y------ ~I

!1t~{r ~

8(1 - V6) [ . .!. (_~ )(k). J
- 3 a. vI I s; nnnn . a .

.Eo +u
(39)

The structure of this potential is quite instructive. Its first part (derived by Kachanov, 1980)
corresponds to dry cracks. The second part (vanishing in the case of dry or partially filled
cracks, or a highly compressible fluid, (j(k) ~ 'XJ) is due to the presence of fluid. When
(j(k) = 0 (either K = Co or Ck)~ 0), ~f given by (39) reduces to the potential of a solid
with cracks constrained against the normal opening but allowed to slide without friction
(Kachanov, 1982, 1992).

The structure of the potential implies the following second and fourth rank tensors as
the proper cavity density parameters:
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1
V~)a3nn)(k) == IX, crack density tensor}

1 dry cracks

VL(a3nnnn)CkJ

1 (a3 )(k)
VL 1+6 nnnn accounts for fluid presence
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(40)

Remark. The two terms of (39) containing fourth rank tensors can, in principle, be
reduced to one: - [8(1- v~)/3£()]0' : (1/ V) L {a 3 [vo!(2 - vo) +(l +6) - I]nnnn} (k) : 0'. Then the
number of proper cavity density parameters reduces to two (the two fourth rank tensors in
(40) can be combined into one). However, the form (39) implying the three parameters
(40) is preferable from the physical point of view, since it separates the "dry" part from the
one due to fluid.

The exact potential (39) can be replaced by a simpler approximate expression, with
reduced number of density parameters, as follows. In the "dry" part of t1f, the second term
enters with a relatively small multiplier vo/2 and can, therefore, be neglected in the first
approximation (Kachanov, 1980). Then,

(41 )

so that only two density parameters are sufficient: second rank crack density tensor a and
the fourth rank tensor (403) accounting for the fluid presence.

In the case of parallel crack-like cavities (with unit normals n = e3),

implying that, if n is fixed, the tensorial parameters (40) are replaced by two scalars

1 1 (a' )(k)_ . 3 (k) _

P - r;~L(a) , PI - VL 1+6

(42)

(43)

where the first one is the usual scalar crack density. The second density parameter PI differs
from P in reducing the k-th crack contribution by the multiplier (1 +6(k») -1 that characterizes
the fluid influence. It affects only the coefficient at O'L (and does not affect coefficient at
0'13,0'23) : the presence of fluid reduces cracks' influence on the effective Young's modulus
£3 but does not affect their influence on shear modulus G 13 .

The transversely isotropic effective moduli are expressed in terms of parameters P, p)
in a unified way, with respect to all distributions of the aspect ratios (CkJ and sizes d k

) :

(44)
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Fig. 7. Parallel narrow, crack-like spheroidal cavities with the aspect ratio ( = 0.01 (crack density
parameter p = 0.1). Variation of the effective Young's modulus with direction. I-dry material;
II-granite (Eo = 6 x 104 MPa, Vo = 0.25) with cracks filled with water (K = 0.5 X 10- 3 MPa -1) ;

III----<:racks filled with an incompressible fluid (K = 0).

E1

G I2 = 2(1 +VI2)' (45)

Influence of fluid on the directional variation of Young's modulus may be quite strong
(Fig. 7).

For randomly oriented crack-like cavities (with aspect ratios uncorrelated with orien­
tations), tensors (40) are isotropic and hence can be found as outlined in Appendix B. The
potential is again expressed in terms of two scalar parameters (43) :

16(1-V6) { [vo ] o},1f= 45(2-
v
o)E

o
[(5- vo)p-2(1-vo/2)pdtr(t1"/T)- 2 P+(1-vo/2)PI (tr/T)~

(46)

and the isotropic effective moduli are

Eo 16(1-V6)
E = 1+ 45(2- vo) [(1O- 3vo)p-3(2-vo)pd,

Go 16(1-vo)
G = 1+ 45(2-v

o
) [(5-vo)p-(2- vo)PI]' (47)

We emphasize that these expressions for the moduli cannot be reduced to functions of the
conventional crack density parameter P onlY-PI is also needed. The case, when all cavities
have the same aspect ratio (, so that all b(k) are the same for all cracks, is the exception: if
this (too restrictive, for most applications) assumption is made, the effective moduli can be
represented in terms of P only. This special case appears to be an implicit assumption in
the work of Budiansky and O'Connell (1976).

(3) Somewhat deformed spheres 11 - SI « 1. Retaining the terms of the first order in
(1_()(k1, we obtain
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A _3(1-VO){[4(1+VO)(17-35VO 1)1 (k) Y(k)

f- 4Eo 7-5vo 7(7-5vo) +3(1+6) VLVcal(1-~)

-G~ ~~: + 3(1 ~ 6»)PJ(tra)2

10(1 + vo) [ _ 4(5 - 7vo) ~,(k) (k)J .
+ 7- 5vo P 7(7-5vo) VL. VCal(1-0 tr(a a)

_ 4(1 + vo) [3(17 - 35vo) _l_J .~ (k)

7-5vo 7(7- 5vo) + 1+6 (tra)a. vL[Vca,,(1-0nn]

120(1 + vo)(5 -7vo) . . 1 (k)}+ (a a). -vL [Vca,,(1- Onn] .
7(7 - 5Vo)2
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(48)

Potential (48) implies the following density parameters: two scalars and one second rank
symmetric tensor:

(49)

An interesting observation is that, in the case of random orientations, various per­
turbation terms in (48) cancel out, so that the effective properties are the same as in the
case of perfect spheres. Thus, the impact of the shape perturbations on the effective moduli
shows up only in second order terms. This explains the fact that, in the case of random
orientations, the influence of shape distortions can be neglected up to moderate values of
(1-0, see discussion of Section 4. A similar finding for the 2-D case of dry moderately
non-circular shapes was reported by Kachanov (1993).

(4) Needle-shaped cavities (aspect ratio ( = a3/a » 1). The potential takes the form:

1{ [1 (2-VO)2]
Af= 2E

o
p4(1-v6)tr(a'a)-p 1- 2v6+ 1+6 5-4v

o
(tra)

2

[
12-voJ .1, (k)

+ 2(1 + vo) 1- 2vo - 1+ t5 5_ 4vo (tra)a. V L..( Vcacnn)

[
1 1+ vo ] . 1 , (k). }

-(1+vo) 2vo+ 1+65-4vo a'VL.(VCal,nnnn) .a. (50)

The structure of (50) implies the following proper density parameters for needles: a scalar
and two "porosity tensors", of the second and fourth ranks

. ~ '( (k) ~ '( (k)p-pOroSlty, VL. Vca"nn) , VL.. Veal,nnnn) . (51 )

We note an important difference between cracks and the cases of needles and deformed
spheres. For cracks, the density parameters contain the fluid compressibility (via t5(k), see
(403», This reflects the fact that the aspect ratios, although small, are generally different
for different cracks, and these differences may strongly affect the individual crack con­
tributions into the overall properties. For both needles and deformed spheres, the density
parameters (51) and (49), respectively, are purely geometrical (do not contain any reference
to fluid). This reflects the fact that, although the fluid does influence the individual cavity
contributions into the overall property, this influence is the same for all cavities (does not
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Fig. 8. Parallel needle-shaped cavities (porosity p = 0.1). Variation of the effective Young's modulus
with direction. [--dry material; II-granite (Eo = 6 x ]04 MPa, Va = 0.25) with cavities filled with

water (K = 0.5 X 10- 3 MPa- I
); III···-eavities filled with an incompressible fluid (K = 0).

depend on the individual (k), to within small values of the first order). Therefore, (j(k) == (j

are the same for all cavities and can be taken out of the summation signs, leaving purely
geometrical quantities as the density parameters. (This statement is to be revised if some of
the cavities are either dry or filled with fluid only partially~for these cavities, the cor­
responding (j(k) =X ; see Section 7.)

We examine now the cases of parallel and randomly oriented needles. In yet another
contrast with the case of cracks, porosity p becomes a single cavity density parameter in
both these cases, and potential 4fis proportional to p.

For parallel needles (with the needle axes parallel to the x3-axis) :

I {[ ) I (2-vo)2]? ?

4f=P2E
o

- 1-2vo+T+b" 5- 4vo (trO')'+4(I- vo)tr(0"0')

and the transversely isotropic effective moduli are:

(52)

Eo _ Eo _ [ _ ,2 _ ~I~ (2-VO)2]
E - E - I +p 3 2~0 I ~ 5 4

1 2 +u - va
(53)

,_!i[, (, ~1~(2-Vo)(4+Vo))]
~31-Eo ~o+p ~o+l+(j 5-4vo

(54)

(55)

Figure 8 illustrates the influence of fluid on the directional variation of Young's modulus.
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For randomly oriented needles (with aspect ratios uncorrelated with orientations),
porosity tensors (51) are isotropic. Calculating them as outlined in Appendix B, we obtain

f>.j = P 30~0 {[8V6 - 12Vo- 5 - f>.l 1~ 6Je trO") 2+ [8(1 + vo)(5 - 3vo) - f>. 2 1~ 6lr(0" ' 0") }

(56)

where it is denoted f>.! = [5(2-vo)(4-5vo)+(1+vonj(5-4vo),f>.2=2(I+vo)2j(5-4vo).
The isotropic effective moduli are as follows:

(57)

6. MIXTURES OF CAVITIES OF DIVERSE SHAPES

Pores in real materials may be of diverse shapes; in addition, some of them may be
either dry or filled with fluid only partially. Our results cover such situations in a unified
way.

As a relatively simple example, we consider a mixture of spheres (of porosity p) and
crack-like cavities, both filled with compressible fluid. This case can be viewed as a simple
model of a porous microcracked material. Utilizing potentials (37) and (39), we obtain:

_ 3(I-Vo){10(I+Vo) . _[1+5VO _1_.~J' 2}
f>.j - P 4E

o
7 _ 5v

o
tr(O" 0") 7 _ 5v

o
+ 1+6, 3 (flO")

8(1- V6) [ . I (a3 )(kl. J
- 3E

o
0". VL I +6,nnnn .0" (58)

where 6s == 6sphere and oe == 6crack are given by (10) and (11). The structure of this potential
identifies tensors (40) for cracks plus one scalar-porosity p-as proper density parameters.

For parallel cracks (n = e3) mixed with spherical pores, the potential takes the form:

3(1-vo) {10(1+Vo) [1+5V O 1 1J )7}+p--- tr(O"'O")- -- +--- (trO" -
4Eo 7-5vo 7-5vo 1+6s 3

(59)

implying that the set of proper density parameters reduces to three scalars: P and PI defined
by (43) plus porosity p. The transversely isotropic effective moduli are:

(60)

(61 )
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(62)

(63)

Note that the presence of spherical pores reduces the degree of anisotropy due to cracks.
For randomly oriented cracks (with an additional, compared to the case of dry cracks,

requirement that crack orientations are uncorrelated with aspect ratios) mixed with spheres

~ - I-v6 [30 16(5-vo) ~J .
1- Eo P 4(7-5vo) +p 45(2-vo) -PI 45 tr(a a)

I-Vo { [3(1+5Vo) 1 IJ 8(1+Vo)[ Vo J} 2- E:: P 4(7 -5vo) + 1+6,4 + 45 2-vop+p, (tra). (64)

Strictly speaking, the structure of (64) implies two independent scalar density parameters
(in agreement with the general structure (34»----eoefficients at (tra)2 and tr(a· a) ; it is more
convenient to express the effective moduli in terms of three scalars P, PI and p that have
clear physical meaning (p and p are the usual crack density and porosity, and PI = 0 for
dry cavities).

(65)

(66)

Figure 9 shows the dependence of the effective Young's modulus on the crack density, at
the given "background" porosityp = 0.1, for several aspect ratios' ofthe crack-like cavities
(assumed to be the same for all cracks).

7. EFFECTIVE ANISOTROPY AS DETERMINED BY THE PROPER CAVITY DENSITY
PARAMETERS

One of the advantages of the proper defect density parameters is that their identification
establishes the anisotropy of the overall properties. We discuss, from this standpoint, the
results obtained above. The discussion is summarized in Table 1.

(1) Narrow, crack-like cavities. This case is described by potential (39), or by approxi­
mate simplified potential (41).

We first discuss the approximate formulation (41). The first term corresponding to a
dry solid contains crack density tensor ~ = (1!V)L(a3nn)(kl . Since it is a symmetric second
rank tensor, the effective elastic properties possess the symmetry of an ellipsoid, i.e., a dry
solid with cracks which are orthotropic, for any arbitrary orientational distribution of
cracks. This result is non-trivial and may be counterintuitive: it applies, for example, to
two families of crack-like cavities inclined at an arbitrary angle to each other. Moreover,
the orthotropy is of a special, simplified type: (1) the number of independent elastic
constants is reduced from 9 to 4 and (2) the variation of Young's modulus with direction
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Fig. 9. Mixtures of spheres (porosity p = 0.1) and randomly oriented crack-like cavities of the same
aspect ratio (. Dependence of the effective Young's modulus on the crack density p (for several
aspect ratios (, the same for all cavities). Material parameters correspond to granite (Eo = 6 x 10'

MPa, Vo = 0.25) filled with water (K = 0.5 X 10- 3 MPa- ' ).

is described by an ellipsoid, rather than by a 4-th order surface (for a detailed discussion,
see Kachanov 1980, 1992). The second term (due to fluid) contains a fourth rank tensor
(l/V)l:[a3(l +(j)-lnnnn](k) that, generally, causes deviations from orthotropy. For a dry
solid, a similar term in (41) containing fourth rank tensor (l/V)l:(a3nnnn)(k) can be neglected,
as discussed in Section 5, and the orthotropy is not violated.

If fluid is present, the second term in (41) cannot, generally, be neglected, except for
the case when parameters (j(k) are large (highly compressible fluid or very stiff matrix).
Therefore, for a solid with fluid inclusions, the orthotropy for an arbitrary orientational
distribution does not hold.

(2) Somewhat deformed spheres. The potential (48) is correct to within values of the
first order in (I - O. Its structure implies that the set of proper density parameters consists
of two scalars (see the coefficients at (trol and tr(a' a» and one symmetric second rank
tensor. Therefore, a simplified orthotropy holds (similarly to the case of a dry solid with
cracks).

(3) Needle-shaped spherOids. This case is characterized by the potential (50). Its struc­
ture identifies one scalar (porosity p) and two tensors of the second and fourth ranks (51)
as the proper density parameters. Since the two tensors are, generally, not coaxial, the
effective elastic properties of a solid with a general non-random orientational distribution
of needles may possess no symmetry elements, even in the case of a dry solid (in contrast
with a dry solid with cracks, which is orthotropic). The case of randomly oriented needles,
on the other hand, is simpler than the one of randomly oriented cracks: the only density
parameter is porosity p (vs two scalar parameters, p and p" for fluid-filled cracks).

(4) General spheroids. The structure of the potential (33) implies that the set of proper
density parameters consists of two scalars--eoefficients at (tra)2 and tr(a' a), two non­
coaxial symmetric second rank tensors--eoefficients at (tra)a: and (a' a) : and one fourth
rank tensor (in the last term of (33». No elements of elastic symmetry exist in the case of
general orientational distribution.

On correct interpretation ofexperimental data on elasticity ofporous materials
The use of proper cavity density parameters is essential for a correct interpretation of

experimental data on elasticity of porous materials. As discussed in Section 5, even in the
case of overall isotropy (random orientation) the density parameters are non-trivial and do



Table I. Cavity density parameters and effective anisotropies for dry and fluid-filled spheroidal cavities

w
v.
w
00

Arbitrary orientational distributionGeometry
at = 0'2 == a
~ :;:::: a3/a

Cavity density parameters
dry cavities fluid-filled cavities

Anisotropy
dry cavities lluid-filled cavities

Random orientations
(isotropy)

Cavity density parameters (scalars)
dry cavities fluid-filled cavities

Narrow,
crack-like
cavities
(<<I

Spheres

Somewhat
deformed
spheres
11-(1« I

Needles
(»1

I) Symmetric 2nd rank crack
density tensor
IX = (I! V)~[a'nn]'k)

2) Fully symmetric 4th rank
tensor (plays a minor role)
I! VL[a3nnnn](k)

Porosity p = (I!V)~V:~!

I) P
2) Scalar (I!V)~[V,·",(I·-O]'k)

3) Symmetric 2nd rank tensor
(ljV)~[V,a,(I-Onn]'kl

I) p
2) Symmetric 2nd rank tensor

(1/ V)L[ V,m.nn](k)
3) Fully symmetric 4th rank

tensor ( I! V)~[ V""nnnn] (k)

Same as for dry cracks
plus
(I! V)~[a3(1+ Ii)- 'nnnn]'k)

Same as for dry spheres

Same as for dry deformed
spheres

Same as for dry needles

Simplified
orthotropy
(approx.,
accuracy
depends on
vn)

Isotropy

Simplified
orthotropy,
to within first
order in
1-(

General
anisotropy

General
anisotropy

Isotropy

Simplified
orthotropy,
to within first
order in
1-(

General
anisotropy

Crack density
P = (1/ V)L[a']'k)

p

p

p

Same as for dry
cracks
plus
PI = (I! V)L[a 3(1 + b)],k)

p

p

p

I;l:l
[fl
::r

~o
~
;:l
0-

s::
:r::
"'n::r
~
;:l
o
""

General
spheroids

General anisotropy, for both dry and fluid-filled cavities. For the proper density parameters (different for dry and
lluid-filled pores), see formula (33) and text.

Scalars PI' P"
given by (35)
with ()Ik) = :x)

Scalars P" P"
given by (35)
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not, generally, reduce to porosity. Therefore, if the shape factors are ignored, the attempts
to estimate porosity from the data on the effective moduli may yield grossly exaggerated
values, particularly in the case of oblate shapes. This was discussed by Kachanov et al.
(1994) in connection with dry porous ceramics. For materials withfluid:filled cavities, the
shape factors enter in combination with physical parameter b(k). The results of the present
work provide all the ingredients for a correct interpretation of experimental data.

Partially saturated materials
One of the advantages of proper cavity density parameters, that correctly take the

individual cavity contributions, is that they cover the important case of partially saturated
materials (some of the cavities are dry or filled with fluid only partially). The presence of
dry cavities is accounted for by taking the corresponding b<k) = 00. This also applies to
cavities that are only partially filled with fluid, if the compressibility of the gas that fills the
remaining part of a cavity is much higher than the one of the fluid.

Table I, summarizing the discussion of this section, is restricted to spheroidal
geometries. As far as the general ellipsoidal shapes are concerned, the proper parameters
of defect density directly follow from substitution of the expressions (17) and (19) for H
and LlH into the potential (31). Such a substitution yields exact expressions for Llland the
density parameters in terms of Eshelby's tensor. These, rather lengthy, expressions are not
included in the table.

The table also assumes that cavities are fully filled with fluid. If some of the cavities
are either partially filled or dry, their individual contributions to the overall density par­
ameters are taken with b(k) = 00, and the results are to be modified as outlined above.

The term "simplified orthotropy" used in Table I is discussed above in this section.
We also note that summation over cavities in the density parameters can be replaced by
integration over orientations, see (32).
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APPENDIX A

Components of the cavity compliance tensor Hfor a general ellipsoidal cavity

- Vo [S'122 (1- SJ33J + S"33) + SI133 (1- S"" + SJ3")]}

V,,", I I ,
H

"
22 =7 E

o
::i\S,122(1-SJ33J)+S,133 S3J"

Sill' I
S"13

S'333 -I

where V"u, = (4/3)na,a2aJ' SUkl are components of Eshelby's tensor. The remaining Hli'l are obtained by the cyclic
permutation of (1,2,3). For a general ellipsoid, SiW are expressed in terms of elliptic integrals (Eshelby, 1957);
for a spheroid, they can be reduced to elementary functions (Mura, 1987).

Coefficients Ai and BJor a general spheroid (entering the pressure polarization tensor (9), the compliance tensors
(19)-(21) and the potential (33»)

Here, XJ is the symmetry axis of the spheroid and L\ is defined above.

2
A 3 = ::i {(I-S"ll + SII22)[(I- VO)S3311 + VO(Sllll + S, 122 + S,133 -I)]

+ (1- SJ333)[Vo(l-S, II rJ - S'1221- (I + VO)S,113S3J11}

I I
As = ::i\(I-S'II' +S'122)[(1+2vo)(I-SIlII-SI122)-2S331 rJ

APPENDIX B

Calculation of isotropic fully symmetric tensors in terms of their traces (relevant for randomly oriented
cavities, formulas (34,48,58)).

We consider tensors of the second and fourth ranks: (I/V)L(Cnn)'k) and (I/V)L(Dnnnn)'k), where Ok) and
D") are certain scalars associated with k-th cavity. In the case when these tensors are known to be isotropic
(random orientations, with distributions of Ok) and D"I uncorrelated with orientations), they can be evaluated as
follows.

The second rank tensor (I/V)L(Cnn)"l, being isotropic, is proportional to the unit tensor, i.e., is equal to d.
To determine c, we take the linear invariant of the equation (I/V)L(Cnn)"1 = d. Then, since trI = 3,

If the fourth rank tensor (I/V)L(Dnnnn)'k) is known to be isotropic, its ijkl components are (see, for example,
Fung, 1994): c,oub"+C,(Olkbj/+O,[l5j,)+cloi';;j/--b,,bj,) where C" c" C3 are some constants. Since, in addition to
being isotropic, the tensor is fully symmetric with respect to all rearrangements of indices (as a sum of fully
symmetric tensors), C3 = 0 and C, = C, == c. The constant C can be determined in terms of the sum (I/V)LD(!) by
the contraction i = i, k = I: (1/ V)L(Dn' nn' n)") == (1/ V)LD(k) = 15c. Thus,


